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Continual Recognition with Adaptive Memory Update

XUANRONG YAO, XIN WANG, YUE LIU, and WENWU ZHU, Tsinghua University

Class incremental continual learning aims to improve the ability of modern classification models to continu-

ally recognize new classes without forgetting the previous ones. Prior art in the field has largely considered

using a replay buffer. In this article, we start from an observation that the existing replay-based method would

fail when the stored exemplars are not hard enough to get a good decision boundary between a previously

learned class and a new class. To prevent this situation, we propose a method from the perspective of remedy

after forgetting for the first time. In the proposed method, a set of exemplars is preserved as a working mem-

ory, which helps to recognize new classes. When the working memory is insufficient to distinguish between

new classes, more discriminating samples would be swapped from a long-term memory, which is built up dur-

ing the early training process, in an adaptive way. Our continual recognition model with adaptive memory

update is capable of overcoming the problem of catastrophic forgetting with various new classes coming in

sequence, especially for similar but different classes. Extensive experiments on different real-world datasets

demonstrate that the proposed model is superior to existing state-of-the-art algorithms. Moreover, our model

can be used as a general plugin for any replay-based continual learning algorithm to further improve their

performance.
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1 INTRODUCTION

The ultimate goal of Artificial Intelligence, particularly machine learning, is to empower machines
with the abilities of humans. This work focuses on imitating humans’ ability to continuously
learn from experience—that is, lifelong learning. Humans can utilize the previously learned skills
to accomplish new tasks and memorize the acquired knowledge as the basis for future learning
without forgetting previous skills. However, current machine learning algorithms perform far less
competitively than humans in this aspect, which has prompted fast-growing research on continual
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Fig. 1. Motivation of adaptive memory update. The triangles represent the samples from a previously learned

class (alpaca), and the rectangles represent a new class (sheep). The dashed line is the learned decision

boundary. (a) The stored exemplars (dark triangles) are not hard enough to obtain a good decision boundary,

and thus some alpacas will be misclassified as sheep. (b) After some exemplars were replaced with samples

more similar to sheep (harder exemplars), we can obtain more discriminative decision boundary.

recognition. Continual learning [8] aims to learn several tasks sequentially while maintaining
good performances on all the tasks learned so far, which is quite challenging. This article focuses
on class incremental continual recognition, where each task is classification on several classes,
and task ID is unavailable during inference.

Some continual learning methods merge the data from new tasks and existing tasks and then
train the model on them, which is quite time consuming in most cases. Others fine-tune the trained
model on the new task, which suffers from the fact that knowledge obtained from old tasks will
be overwritten upon training on a new task, resulting in poor performances on old tasks. This
phenomenon is referred to as catastrophic forgetting. Existing works to solve the catastrophic for-
getting problem on continual learning can be divided into three categories: (i) parameter isolation,
dedicating different model parameters to each task, which is restricted to the task incremental set-
ting; (ii) regularization, adding certain restrictions during model updates to prevent the model from
“forgetting” the learned knowledge of old tasks, which, although it can mitigate the catastrophic
forgetting problem to some extent, suffers from a performance drop as the number of tasks con-
tinuously increases; and (iii) replay, partially memorizing data from old tasks as exemplars and
mixing them with the new data for training, which has the best performance among the existing
literature but can still inevitably “forget” knowledge obtained previously. Since replay methods
achieve the state of the art, we choose to design our owned model based on replay.

Most of the preceding models focus on the training stage and design different methods to pre-
vent forgetting. However, forgetting always happens, even for humans. The Ebbinghaus forgetting

curve [26] shows that learners will forget about 90% of what they have learned within the first
month. Due to the inevitability of forgetting, how to fix the model after forgetting happened needs
to be considered. To the best of our knowledge, we are the first to remedy the machine learning
model after forgetting happened. As Figure 1 shows, one major reason for forgetting from replay
methods is that the stored exemplars are not sufficient to help discriminate between the coming
classes and previously learned classes. As no information is provided about the future classes, we
could only tackle this issue after we meet the new classes. Inspired by the baby who is born with
the ability to learn and recognize continually [35], we assume that most learned samples are stored
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Fig. 2. Illustration of the learning process. After learning a task, our model conducts an adaptive forgetting

check for each learned class. If the model performs well and no classes experience severely forgetting, the

model could continue to learn the next task (red dashed line). If the model performs poorly and some classes

are forgotten, the model needs to conduct memory update on the forgetting classes before learning the next

task (gray dashed line).

in long-term memory. As forgetting or interference happen, they are retrieved efficiently to solve
the issue.

Based on the preceding observation and assumption, we propose a continual learning method
with adaptive memory update for class incremental continual learning. The proposed method only
preserves a small number of exemplars in working memory for each task learned. By conducting
half-and-half validations on exemplars, our method can adaptively determine which classes are
experiencing severe forgetting or interference. By exchanging data points between current exem-
plars set and long-term memory in a non-trivial manner, our method can adaptively maintain a
group of exemplars that best help memorize the forgetting classes. Meanwhile, the computational
complexity of our model for a single task will not be increased. Moreover, our proposed method
can serve as a general plugin for any replay-based approach to further improve their performance.
We report our experimental results on comparisons between our method and several baselines on
CIFAR-100 and mini-ImageNet, showing that our method can significantly outperform state-of-
the-art methods. Figure 2 shows the process of our proposed continual learning method.

Our contributions are summarized as follows:

• We propose using adaptive memory update to remedy the machine learning model after
forgetting, which is the first work with such mechanism to the best of our knowledge.
• We propose a novel continual recognition model, which is capable of adaptively discovering

classes being severely forgotten or interfered with, and then conducting a memory update
on these classes through exchanging data points between the current exemplars set and
long-term memory.
• We conduct extensive experiments on several real-world datasets to validate our proposed

method’s superiority over existing baseline approaches.

The rest of the article is organized as follows. We discuss related works in Section 2 and ex-
plain the details of our proposed model in Section 3. In Sections 4 and 5, we conduct extensive
experiments on various real-world datasets to show the proposed model’s advantages against ex-
isting state-of-the-art approaches. We finally conclude the article and point out future research
directions in Section 6.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 3s, Article 134. Publication date: February 2023.



134:4 X. Yao et al.

2 RELATED WORK

Continual learning, also known as lifelong learning, is continuously acquiring, modifying, and
transferring knowledge and skills. It remains a considerable challenge for machine learning and
neural networks. In recent years, much work [4, 21, 27, 30, 36] has been proposed to address
the catastrophic forgetting problem. The existing methodologies for continual learning can be
divided into three categories: parameter isolation-based methods [1, 15, 22, 24], regularization-
based methods [10, 18, 23], and replay-based methods [5, 7, 14, 31, 39]. Our work is based on replay.

2.1 Parameter Isolation Based Methods

Parameter isolation based methods [22, 24] dedicate different subsets of the model parameters to
each task. When a new task arrives, this kind of method trains a new branch of network with
parameters from the previous task (or sometimes entirely new). After the training of this task,
the branch is determined to be used for the prediction of this task and can be reused in a layer-
wise or neuron-wise way for future tasks. Some methods select a new branch from the original
architecture [24], whereas others increase the model capacity to grow a new branch [22].

Most of these works require a task identifier to activate the corresponding branch during pre-
diction, and it impairs the performance of the model significantly. The catastrophic forgetting
problem still exists when the model capacity is limited.

2.2 Regularization-Based Methods

Regularization-based methods limit how far the parameters can move from values that were opti-
mal for previous tasks. This is usually implemented via additional terms in the loss function. Some
methods discourage the updating of essential parameters for past tasks [18]. They determine essen-
tial parameters in the current task first and then penalize the change to these parameters in future
training for the new tasks. In the training phase for a new task, they use the output probabilities
for each image on the old task as a soft label, and the updated model’s output is forced to be close
to these soft labels [23].

To some extent, regularization-based methods are a simple way to mitigate the problem of
catastrophic forgetting. However, the constraint is still insufficient to counter the accumulation
of errors in old tasks, and the drop in performance is inevitable as the number of classes
increases.

2.3 Replay-Based Continual Learning

Replay-based continual learning methods, also known as rehearsal methods, need a memory com-
ponent to store samples from the previous task. The stored samples are often in their raw format,
known as exemplars. These previous task samples are replayed while learning a new task to allevi-
ate forgetting. This memory component plays a role like the hippocampus of the complementary
learning theory [25].

With the stored samples, the replay-based methods perform pretty well in continual learning.
Nevertheless, which samples to store remains a challenge. Several strategies [16, 31] have been
proposed for selecting the samples.

Recently, some works have tried to use generative models to generate high-quality samples
instead of storing them [34, 38]. However, this also leads to a challenge of training the generative
model continually.

Most replay-based methods pick samples randomly from the exemplar set while training, which
is not optimal. Aljundi et al. [2] use a selective replay technique that retrieves the most disturbed
samples from the exemplar set each time. Shim et al. [33] try to retrieve those exemplars that would
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be most helpful for learning. Inspired by game theory, they use the Shapley value to measure the
extent to which the samples contributed to the learning.

How to store the exemplar set more efficiently is of equal interest. Riemer et al. [32] use a
discretized variational self-encoder to compress the stored exemplar set to save storage costs.
Caccia et al. [6] use a variational self-encoder with adaptive vector quantization to compress the
exemplar set.

2.4 Class Incremental Scenario

There are different settings of continual learning [37]. In this article, we focus on class incremental
continual learning, where the model does not have access to the task-ID at inference time and
therefore must be able to distinguish between all classes from all tasks. It is a much more difficult
scenario.

3 PROPOSED METHOD

In this section, we first formulate the class incremental continual learning problem in Section 3.1,
and then we describe our main components in Sections 3.2 through 3.4.

3.1 Problem Formulation

In class incremental continual learning, a model experiences a sequence of classification tasks
denoted by T = [(C1,D1), (C2,D2), . . . , (CT ,DT )], where each task t is represented by a set of
classes Ct = {c1

t , c
2
t , . . . } and training data Dt . T is the total number of tasks and is not a pri-

ori. Each training data Dt contains a number of input-target pairs (x t
i ,y

t
i ), which is identically

and independently drawn from an unknown distribution. Here, x t
i represents the i-th input ex-

ample in task t and yt
i ∈ Ct represents its class label. We use Nt to represent the set of total

classes in all tasks up to and including task t: Nt = ∪t
i=1Ci Usually, different tasks contain differ-

ent classes, and hence the model needs to recognize more and more classes during the training
phase.

We denote our model as Mθ : X → Y , composed by a feature extractor f : X → Rd and a
classifier дW : Rd → Y . Here, f can be any convolutional neural network, depending on the
complexity of the dataset. The parameters W of д is a set of weight vectors {w1,w2, . . . ,wk },
and k is the number of classes learned so far. When our model finishes training on one task and is

ready for learning a new task, f andwi would be temporarily saved as f̂ and ŵi for distillation loss.
Meanwhile, classifierW will expand, and several new weight vectors will be added corresponding
to the classes in the new task.

The model gets to learn tasks sequentially, and it is worth mentioning which tasks the samples
belong to is not provided in the inference phase.

3.2 Long-Term Memory

When forgetting happens and we want to do something to remedy it, the first thing to determine
is what has been forgotten. There are usually two situations for humans. One is that humans could
tell what they have forgotten through their own perception. The other one is that humans become
confused or make mistakes. The latter situation is quite similar to the catastrophic forgetting
of our machine learning model. After determining what has been forgotten or interfered with,
humans could review them from some learning resources like the library or the Internet, or even
their memory if they have a good one. Since there are no such resources for our machine learning
model, we choose to store the learning material, i.e., the training data, into a long-term memory
component.
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Someone may argue that most existing works follow a rule that the training data for previously
learned tasks is unavailable. There are two main reasons for this rule: one is the privacy issue, and
the other is storage constraints. However, Knoblauch et al. [19] claim that the optimal continual
learning model needs perfect memory. Bartol et al. [3] estimate that the storage capacity per
synapse is roughly 4.7 bits of information, and this implies that the total memory capacity of the
brain, with its many trillions of synapses, is much larger than the size of our continual learning
model.

These findings make us wonder whether this rule is still necessary in today’s world of reliable
encryption and anonymity technology, and low storage costs. In this article, we relax the rule in
a way that the training data is stored in a long-term memory component and can be accessed
depending on demand.

3.3 Exemplar Management

Our model maintains a collection of exemplars E = {e1, e2, . . . , ek } during training as working
memory. When the model finishes training for a task, a few exemplars of each new class will be
selected and added to the exemplar set. The data from the collection will be involved in the training
on future tasks later.

Some methods use an exemplar set of a fixed size. Every time new exemplars are added, the
number of old class exemplars needs to be reduced to meet the fixed size limit. Since the number
of tasks is unknown, it is difficult to determine a proper size for the exemplar set at the very
beginning. Our model maintains the exemplar set without the constraint on fixed memory size
and uses a constant number of exemplars for each class instead. In this way, the exemplar set’s size
will increase linearly as the number of classes increases. Since the number of exemplars for each
class is a small constant, the problem of increasing size is affordable compared to the improvement
brought by the exemplar set.

We use herding selection to select exemplars. Herding selection [31] is a greedy algorithm for
selecting new exemplars for one class. This algorithm iteratively selects exemplars from training
data and makes the mean feature vectors of exemplars close to the mean feature vectors of training
data until the exemplar set size is met.

3.4 Adaptive Memory Update

To conduct a memory update, there are two fundamental problems to be solved. One is when to
update, and the other is how to update.

As we will see later, the drop in model performance varies significantly from class to class, telling
us that the probability of a class being forgotten is quite different. Here we let the unit for memory
update be one single class rather than all classes in one task. In the following discussion, we are
going to focus on a particular class c .

When to Update. The time for our model to update is when the model finds itself unable to distin-
guish a class from other classes—that is, performing poorly on the data from this class. However, it
is difficult for a model to obtain this kind of ability and evaluate its own performance autonomously.
We tackle this issue through conducting a half and half validation procedure on our exemplar
set.

Before training a new task, the data from each class’s exemplar set is randomly divided into two
parts. One part is then used as training data to participate in model training together with the data
from the new task. After the training is completed, our model would be tested on the other part,
which we call half and half validation.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 3s, Article 134. Publication date: February 2023.



Continual Recognition with Adaptive Memory Update 134:7

Fig. 3. Adaptive memory update (AMU). After training on the task i , some samples will store in the exemplar

set (dashed line), whereas others will be stored in long-term memory (dotted line). In the memory update

stage, the same number of samples as the exemplar set are taken from long-term memory to replace the

original exemplars.

If our model performs poorly on the other part for a particular class, our model will update the
exemplar set for this class. The criterion we adopt for poor performance is whether the recall score
is lower than a threshold λ. Any other reasonable criterion can also be used.

Based on the preceding mechanism, our model could determine whether a class c needs a mem-
ory update.

How to Update. After training a task, we assume that all the training data is not discarded but
instead is stored in a long-term memory component. A simple and brute-force update approach
is to take all the data from class c into the training procedure. This method, however, requires a
lot of access operations on long-term memory, and the training complexity is greatly increased,
especially when there are many classes that need an update.

To address this difficulty, we propose a simple and elegant update approach. We replace the
exemplar set with the same number of data samples that are randomly selected from long-term
memory. In this way, the long-term memory component only needs to support random access
operation by class. Besides, the training complexity with the memory update is not increased at
all. Figure 3 illustrates the process of the adaptive memory update.

3.5 Loss Function

Our loss function contains two terms: distillation loss Ldist il l and classification loss Lcl f .

Distillation Loss. Distillation loss was originally proposed to transfer knowledge between dif-
ferent neural networks [13]. Here we use it to maintain the output of our model on the old tasks
while training the model on a new task. When our model is training on task t , the distillation loss
Ldist il l is computed as follows:

Ldist il l = −
∑

(xi ,yi ∈Dt )

∑

j ∈Nt

qi j loд pi j + (1 − qi j ) loд (1 − pi j )

And qi j is computed as:

qi j =
⎧⎪⎨⎪⎩
hj (xi ) j ∈ Nt−1

yi j ∈ Nt − Nt−1
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Here, pi j represents the probability of the i-th sample belonging to class j, and hj (xi ) is the output
from the old model before training on task t :

pi j = siдmoid �
�

w�j

| |w j | |2
f (xi )�

	
hj (xi ) = siдmoid �

�
ŵ�j

| |ŵ j | |2
f̂ (xi )�

	
Here we adopt a l2-normalized form of weight vector to produce logits, which is useful and

practical for solving the class imbalance issue in continual learning [14].

Classification Loss. In the traditional multi-class classification task, cross-entropy loss with soft-
max activation is the most commonly used loss. When considering distillation loss, we find that
binary cross-entropy with sigmoid is a better choice than cross-entropy with softmax, because
the soft label in distillation loss is more analogous to a multi-label target than a multi-class one.
As we can see, the form of distillation loss is binary cross-entropy with sigmoid activation. For
consistency, the binary cross-entropy loss is directly performed on the exemplar set.

Lcl f = −
∑

(xi ,yi ∈E)

∑

j ∈Nt

δyi=j loд pi j + δyi�j loд (1 − pi j )

δ is an indicator function. Finally, our loss function is calculated as:

L = Ldist il l + Lcl f

The overall incremental training process with the proposed method is presented in
Algorithm 1.

4 EXPERIMENTS

4.1 Datasets

We compare the proposed method with several baselines on two widely used image datasets for
class incremental continual learning: CIFAR-100 and ImageNet-Subset.

CIFAR-100 [20] consists of 60,000 samples of 32 × 32 color images in 100 classes, with 600 images
per class. The official training set is used as our training data, and the rest is for testing. In this
way, each class has 500 training and 100 test samples.

ImageNet-Subset is a subset of ImageNet [9] with only 100 classes, randomly sampled from the
original 1000. We also use the official split of training and test, where each class has about 1,300
training and 50 test samples of 224 × 224 color images.

4.2 Baseline Methods

For a fair comparison, we choose two state-of-the-art methods that use exemplars as baselines.
iCaRL [31] is a widely used baseline, and it uses a distillation loss and a nearest-mean-of-exemplars
classification strategy. BiC [39] aims to solve the imbalance problem and proposes a bias correction
layer. Besides, we report the performance of the Base method that only uses exemplar sets and
cross-entropy loss. More specifically, we respectively report the results of CNN predictions and
nearest-mean-of-exemplars classification, denoted as CNN and NME for the suffix. Some papers
denote it as NCM (nearest-class-mean) instead of NME.

4.3 Protocol

Some work starts with a network trained on a large number of classes and then learns several
classes per task incrementally. This setting might give an added advantage to scaling/bias
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ALGORITHM 1: IncrementalTrain

Input: Dt = (X t ,Y t ) // Training data for task t

Input: E = {e1, e2, . . . , ek } // Exemplar set

Input: P = {P1, P2, . . . , Pk } // External database

Input: Mθ // Current model parameters

Output: E,Mθ // New exemplar set & model

Etr ain , Evalidate ← ∅ // Split the exemplar set

for i ∈ Nt−1 do

et
i , e

v
i ← RandomSplit(ei )

Etr ain ← Etr ain ∪ et
i

Evalidate ← Evalidate ∪ ev
i

Mθ ← BackPropagation(Mθ ,Dt ,Etr ain ) // Train

// Adaptive Memory Update

for i ∈ Nt−1 do

if MeetCriterion(Mθ , e
t
i ) then

ei ← RandomSelect(Pi )

else

ei = Join(et
i , e

v
i )

for i ∈ (Nt − Nt−1) do

ei = HerdingSelect(X t
i ,Y

t
i )

E = {e1, e2, . . . , eCt
} // New exemplar set

return E,Mθ

correction methods [29]. So in our article, we divide the classes into several tasks of equal
size.

For CIFAR-100, we preserve 50 exemplars for each class, and for ImageNet-Subset, we preserve
100 exemplars per class. The class order plays an important role, and hence we run experiments
five times on a random but fixed class order. After each task, the resulting classifier is evaluated
on the test data of the dataset, considering only classes that have already been trained. The result
of the evaluation is a curve of the classification accuracies after each task. The average of these
accuracies is also reported as incremental average accuracy.

4.4 Implementation Details

All compared models are implemented with PyTorch [28] and trained on TITAN-X GPUs. We
adopt ResNet [12] as the convolutional network backbone to extract features for all models. The
training images are randomly flipped and cropped as data augmentation. The threshold λ we set
for the update is 0.7. For CIFAR-100 and ImageNet-Subset, our model is trained by Adam [17]
for 70 epochs with the batch size 128 and the initial learning rate 0.001 while other baselines are
fine-tuned to gain their optimal performance. It is worth mentioning that all results are from our
implementation for reproducibility.

5 RESULTS AND ANALYSIS

We run our experiments on 5, 10, and 20 tasks with 20, 10, and 5 classes per task. Five random class
orders are used, and the mean of incremental average accuracy is reported.

Figures 4, 5, 6, and 7 show the results of CIFAR-100 and ImageNet-Subset using NME inference
and CNN inference, respectively. One can see that our proposed method significantly beats other
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Fig. 4. Evaluation on CIFAR100 using CNN inference.

Fig. 5. Evaluation on CIFAR100 using NME inference.

Fig. 6. Evaluation on ImageNet-Subset using CNN inference.

Fig. 7. Evaluation on ImageNet-Subset using NME inference.

approaches, and the larger number of tasks we have, the more ours outperforms other baselines,
indicating that our model is more adaptable for real lifelong learning.

General Plugin. Table 3 shows the effect of using the adaptive memory update as a plugin among
different models. Ours benefits from this update and obtains the best improvement when using
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Fig. 8. The recall of different classes after each task. Each small rectangle located at (i, j ) in the figure repre-

sents the recall of class j after finishing training task i , and the darker color indicates a lower recall value. The

red box located at (i, j ) represents that class j needs update after task i . The drop in recall varies significantly

from class to class, as the model is trained on more and more tasks. Some classes, such as class 5, remain

high recall since the beginning, whereas recalls of other classes drop rapidly to low levels after one or two

tasks, such as classes 42 and 52. We observe that recalls of some classes, including class 20, return to a high

level after memory update, whereas other classes, such as class 52, may require repeated updates. This figure

is generated from 10 classes per task experiment on CIFAR100.

Table 1. Using Different

Update Strategies

CNN NME

Herding 68.27 68.65
Random 67.95 68.47
Testing 67.37 66.40
Kmeans 67.58 66.34
GNG 67.81 66.21
Nearest 66.89 65.73

NME to make the inference. However, iCaRL-NME’s performance drops a little bit after using this
plugin. This is because iCaRL-NME’s distillation loss uses the model’s previous output as targets
for the exemplar set, resulting in a steady accumulation of old classes’ errors and the failure of the
plugin. Other methods, more or less, have been improved by the plugin.

Memory Size. Table 2 shows the effect of the different memory sizes. Fixed 2000 means using
an exemplar set with fixed capacity, and in this way, the more classes stored, the fewer exemplars
reserved for each old class. All methods demonstrate a significant increase in incremental average
accuracy using a larger size of the exemplar set. Ours consistently performs best under different
memory sizes.

Criterion for Update. Figure 8 shows that the drop in model performance varies significantly
from class to class, indicating that the probability of forgetting a class is different. In our proposed
model, the criterion according to which a class needs an update is that the recall of the model for
the target task is below 0.7. Figure 9 (left) shows how this threshold influences the performance.
We conduct experiments on CIFAR100 for 10 tasks with 50 exemplars for each class. We can see
the slope of this curve is going up, indicating that as the number of updates increases (a larger
threshold tends to increase the probability that a class needs update), the model’s gain from the
update increases. If our access to the long-term memory is fast enough, we can update all the
classes we have learned to achieve better performance.
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Table 2. Effect of the Memory Size

Fixed 2000 20 50 100 150

Ours-NME 67.73 64.93 68.47 70.65 72.74

Ours-CNN 67.03 64.00 67.94 70.47 72.45

iCaRL-NME 65.20 62.51 64.99 67.02 68.88
iCaRL-CNN 54.45 49.90 62.51 58.53 60.25

BiC-NME 58.84 50.62 56.55 59.51 60.60
BiC-CNN 57.21 47.29 58.29 60.24 61.80

Base-NME 54.74 47.41 60.40 60.20 61.89
Base-CNN 53.29 44.29 53.68 59.40 61.74

Fixed 2000 in the header means using an exemplar set with a fixed

capacity of 2,000 samples for all classes. Others in the header

mean the number of samples the model stored for each class.

Table 3. Effect of Using Adaptive Memory

Update (AMU) as a Plugin

w/o AMU w/ AMU

Ours-NME 67.00 68.22

Ours-CNN 67.19 67.76

iCaRL-NME 64.73 64.54
iCaRL-CNN 61.56 62.15

BiC-NME 56.55 58.80

BiC-CNN 58.29 59.28

Fig. 9. The effect of threshold.

Access Overheads. However, there is always an overhead for accessing the long-term memory.
Sometimes this becomes a non-negligible constraint on our method. Figure 9 (right) shows the
performance when we limit the access times. The access limit means how many classes we can up-
date after one task. As we can see, the performance first rises rapidly and then slowly as the access
limit increases, which shows that it is enough to update a few classes for impressive improvement.

Update Strategy. In this work, we use a simple and elegant memory update strategy. We replace
exemplars with randomly selected samples in the long-term memory. In addition to this method,
we tried other strategies based on different sample selection methods. The results are shown in
Table 1. Random is our proposed strategy. Nearest strategy means selecting those samples that
are close to the misclassified exemplars in feature space. Herding strategy uses herding selection
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to select samples. Testing strategy means selecting those samples from the external database that
are misclassified. To select the most representative samples, Kmeans strategy selects the cluster
centers after conducting the standard Kmeans clustering algorithm. GNG strategy selects samples
via growing neural gas algorithm [11], which helps maximize coverage of the feature space.

Exemplars play a crucial role in replay-based methods. The model needs the exemplars to find
the best distinguishing feature for the classes learned before. Furthermore, when the model uses
NME to infer, exemplars need to approximate the means of classes in feature space. That is why
Herding performs best, followed by Random strategy by a narrow margin; Nearest performs worst
in both settings; Testing performs poorly using NME but is not bad using CNN. It is noted that
these methods, in addition to Random, require additional computation to obtain samples’ features,
classification results, or cluster centers, but finally come to a comparable result or worse. So we
choose Random as our update strategy for efficiency.

6 CONCLUSION

In this article, we proposed a novel method using an adaptive memory update mechanism and a
novel loss to tackle the catastrophic forgetting problem in class incremental continual learning.
As far as we know, it is the first time that the concept of remedy has been brought into the field
of continual learning. Experimental results on CIFAR-100 and ImageNet-Subset demonstrate that
the proposed method achieves better performance than existing state-of-the-art continual learn-
ing algorithms. This work also starts a discussion on bringing humans’ mnemonic methods and
designing human-like models to solve catastrophic forgetting in continual learning.
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